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Hypersonic flows past a yawed circular cone and 
other pointed bodies 

By H. K. CHENG 
Cornell Aeronautical Laboratory, Inc., Buffalo, New York 

(Received 26 May 1961) 

A detailed treatment of inviscid hypersonic flow past a circular cone is given, for 
small and moderate yaw angles, within the framework of shock-layer theory. 
The basic problem of non-uniform validity associated with the singularity of 
the entropy field is examined and a valid first-order solution is obtained which 
provides an explicit description of a thin vortical layer at the inner edge of the 
shock layer. Analytic formulas for pressure and circumferential velocity are 
given consistent to the second-order approximation including the non-linear 
yaw effect. 

The study of the entropy field (which is not restricted to the hypersonic case) 
also provides corrections to previous work on the yawed cone and confirms the 
validity of the linear yaw effect on pressure field in the Stone theory. 

A related investigation of three-dimensional flow fields is presented with 
special reference to the flow structure near the surface of a pointed, but other- 
wise arbitrary body. The inviscid streamline pattern on the surface is given by 
the geodesics originating from the pointed nose as a leading approximation of 
shock-layer theory. Associated with this streamline pattern is a vortical sublayer 
which exists generally at small as well as a t  large angle of attack. At the base of 
the sublayer, enthalpy and flow speed remain essentially uniform. 

1. Introduction 
There exists no simple treatment for the problem of compressible flow around 

a body, except under the simplification for a slender body or low Mach number. 
For hypersonic flow involving a strong shock wave, however, an attractive 
approach based on the shock-layer concept is available. In  the earlier work on 
inviscid hypersonic flow, Busemann (1933) considers the limiting situation of 
M, + 00 and y -+ 1. In  this limit, the compression ratio across the bow shock is 
infinitely high, the ‘shock layer’-the region between the shock and the body 
surface-is vanishingly thin, and the result is particularly simple. Later workers, 
notably Ivy, Klunker & Bowen (1948), Chester (1956), Freeman (1956), and 
Cole (1957), have expanded the idea into a consistent treatment of plane and 
axisymmetric hypersonic flows. This paper is concerned with three-dimensional 
hypersonic flows, specifically the analysis of a yawed circular cone, and a related 
exploration of a few unique features of the flow field around other pointed bodies. 
This study, with the exception of certain portions of Q 3 (which is not restricted 
to hypersonic flow), is carried out in the framework of the shock-layer theory. 
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There has been a basic difficulty in the supersonic yawed-cone problem itself. 
In  the theory of Stone (1948, 1952), the problem is treated by a procedure of 
small perturbation in the yaw angle. This treatment has provided a basis for 
the rather extensive computations undertaken by Kopal (1947 b, 1949). The 
analysis breaks down, however, in the vicinity of the cone surface. As pointed out 
by Ferri (1950), it fails to account for the presence of a ‘vortical layer’ (a thin 
layer of intense vorticity next to the body) and results in an incorrect value for 
the entropy on the surface. In  the subsequent treatment of this problem, a per- 
turbation in yaw angle will also be employed in order to gain an explicit solution 
to the problem. Nevertheless, the basic problem related to the singularity of 
the entropy field is examined and a modified scheme of approximation is found. 
Such inquiry is essential not only from the viewpoint of application to the 
boundary-layer analysis, but also for ensuring the internal consistency of both 
Stone’s and present theories. 

Using the shock-layer approach, three-dimensional problems involving 
cross-flow velocity have also been treated recently by Cole (1958), Gonor (1958), 
Hayes & Probstein (1959), Guiraud (1959a), Maikapar (1959), and Lava1 (1959). 
While definite results have been obtained mostly for simple bodies, such as 
yawed cones and bodies of revolution at an angle of attack, the general method 
described by Hayes & Probstein, Maikapar and Guiraud is applicable to bodies of 
arbitrary shape, at least in principle. These studies pertain to the limiting situa- 
tion of M, --f 00 and B = (y  - l)/(y + 1) -+ 0, and correspond to the two-dimen- 
sional theory of Busemann. Ina  more recent paper, Guiraud (1959 b )  has extended 
the treatment of the cone problem to include the first-order effect of finite M, 
and 6.  Within the accuracy and the limitation of the shock-layer theory, these 
analyses have provided useful information on the distribution of the surface 
pressure. In  these works, the vortical layer and its effects have not been pro- 
perly taken into account, although its existence may be inferred from certain 
peculiar features of the solutions (Gonor 1958; Guiraud 1959b). 

While the pressure distribution on the circular cone obtained from the present 
treatment agrees generally with those given by other workers, the present 
solution provides an explicit, analytic description of the entire ffow field which 
reveals the structure of a thin vortical layer at the inner edge of the shock layer. 
The approximation given for the entropy field is valid uniformly to the first order 
of 8 and of the yaw angle, whereas the pressure and the circumferential velocity 
fields are determined consistent to the second order. The shock wave is required 
to be strong; the Mach number, however, is not required to be infinite. In  the 
study pertaining to a pointed body of arbitrary shape, the streamlines near the 
surface are found to follow closely the surface geodesics which originate from 
the pointed nose. Related to this is the presence of a thin vortical layer which 
generally exists a t  small aa well as at large angles of attack. To the writer’s 
knowledge, this pattern of surface streamlines, and the related sublayer be- 
haviour of the flow field, have not been brought out, clearly in any of the previous 
studies, although the fact that the streamlines in the shock layer tend to follow 
geodesics is quite well known (Hayes Q Probstein 1959; Maikapar 1959; Guiraud 
1959a). 
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Recently, the writer’s attention was directed to a study by Willet (1960) on 
supersonic flow around a yawed circular cone, in which it is shown that each 
inviscid streamline on the cone surface passes through the cone apex. This 
finding is certainly consistent with the present conclusion for the streamline 
pattern on a pointed body. Very recently, the vortical layer on a circular cone in 
supersonic flow has been studied by Woods (1960). In  this work, an expression 
of the entropy field exactly equivalent to that based on the present scheme (Cheng 
1960) is given. However, the crucial question of uniform validity of the approxi- 
mation, which is handled with considerable care here, is not thoroughly examined 
in Woods’s paper. 

The numerical approach also will be mentioned. While numerical analysis 
of the yawed-cone problem has not met with success in the past, the inverse 
problem of finding the body shape corresponding to a given conical shock can 
be analysed numerically and has recently been studied (Radhakrishnan 1958; 
Briggs 1959). By cut and try, an appropriate shock shape and the corresponding 
solution to the flow field around the given conical surface may presumably be 
approached. Since a very thin vortical layer will generally exist in hypersonic 
flow even at large yaw angles, such numerical procedures are not satisfactory 
for the study of the flow field near the body surface. 

Basic to the following investigation are the assumptions of a strong shock 
wave with a high compression ratio. For simplicity, the model of a perfect gas 
with constant specific heats is adopted. In  all studies pertaining to pointed 
bodies, the shock wave is assumed to attach a t  the apex. The region on a convex 
body corresponding to the ‘zero-pressure point ’ (Lighthill 1957; Freeman 
1960), where the shock-layer approximation breaks down, is excluded from the 
present discussion. 

Most studies presented in this paper are based on a previous report of the writer 
prepared under the sponsorship of the United States Air Force through the 
Aeronautical Research Laboratory of the Wright Air Development Division, 
Contract No. AF 33(616)-6025 (Cheng 1959). The analysis of the yawed-cone 
problem given in 0 2 is less restrictive however than its previous version, in regard 
to the requirement on the shock strength. The writer would like to take this 
opportunity to thank Mrs A. L. Chang of the Aerodynamic Research Department, 
Cornell Aeronautical Laboratory, for her contribution to most of the detailed 
analyses, and Prof. H. Pollard of the Mathematics Department of Cornell 
University for valuable discussions. Acknowledgement is due also to Messrs J. P. 
Guiraud and L. Lava1 of O.N.E.R.A., France, who have kindly pointed out to 
the writer certain algebraic errors in his previous report. 

2. Small-perturbation treatment of inviscid hypersonic flows over 
yawed circular cones 

2.1. Basic assumptions and formulation of the problem 
It is convenient to formulate the problem of a circular cone in spherical co- 
ordinates (r,  8, w ) ,  where T is the distance from the origin, 8 the angle between 
an axis Ox and the position vector, and w the angle between the meridian plane 
(the plane containing the axis Ox and the position vector) and an x-y plane (see 
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figure 1). The apex of the cone will be chosen as the origin, and the axis of the 
cone as the axis Ox. The x-9 plane is normal to the cone's plane of yaw. The 
orthogonal velocity components along the position vector, and along the direc- 
tions of increasing 9 and w ,  will be designated respectively as u*, v* and w*. 

z 

FIGURE 1. The co-ordinate system for analysing the circular-cone problem. 

With the present approach to the problem in mind, a set of non-dimensional 
variables will be introduced to replace the physical flow quantities. Let 

(2.2) 
sin 9 - sin r 

€sin7 
and 0 s  

where T is the half-cone angle, p* the pressure, and p* the density. The parameter 
E stands for (y  - l)/(r + 1). When the shock-layer concept applies, the magnitudes 
of u, w, w, p and p are expected to be bounded even in the limit of vanishing 6. 

Meanwhile, the thickness of the shock layer, in terms of the new spatial variable 
8, will be of order unity. The cone surface will be located at 8 = 0. Anticipating 
conical symmetry of the flow fields, the system of differential equations stating 
the conservation laws of momentum, mass and energy may now be written as 

a a 
2(1+ a9)pu+J - [( 1 +s8)pvI + crz (pw) = 0, ae 

J 
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[pw - 6 cos w], 6, J[pv-Jusinw+(l+~B)cosa] = u--- 
1 f E e  

1 + €6)  cos a - J2crsinw + u~ ~ 

(1+E6)  

cosw] 2 

+ ( &6)2] ( p  - E K )  = 
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* (2.4) 

where u is the yaw parameter sin a/sinr and J stands for cos 8; i.e. 

J E { 1 - sin2 7(  1 + ~ 6 ) ~ ) * .  

The variable 6 in equations (2.4) now stands for the unknown position of the 
shock as a function of w, 6 = eSh(w), and #, stands for the derivative d8&/d@. 
The first and the third of (2.4) express the conservation of mass and energy, and 
the second equation the conservation of momentum in the direction normal to the 
shock surface; the last two equations state the continuity of tangential velocity 
components across the shock. An integral of the differential equations, (2.3), 
consistent with the boundary conditions, is of c~urse  the Bernoulli relation ; 
that is, the total enthalpy remains constant throughout the entire field. This 
relation may be used in place of the first of (2.3). The above system of equations 
will be sufficient for the determination of the fields of velocity, pressure, and 
density as well as the conical shock envelope. 

2.2. Analytic treatment by development in E and cr 
The above formulation shows that the supersonic yawed-cone problem is 

reducible to one governed by four parameters, namely, 7, K,  E and u. In  Stone’s 
theory (1948, 1952), a development in ascending power of the yaw parameter u 
is assumed as a basis for numerical solutions (Kopal 1947 b). In  order to provide 
an explicit, analytic description of the flow field, it  will be tentatively assumed in 
the present treatment that the flow-field variables are developable in powers of 
both E and u. Typically 

P = Po0 + E P l O  + UP01 + E”2o + EflPll+ u”02 + * -. - (2.5) 
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Consistent with this is a similar development for the shock position 

B,,(w) = B", + €BIO + 080, + . . . . 
Since [e& - 0,,] is a, controllable, small quantity, it is permissible to replace the 
set of outer boundary conditions, (2.4), by an equivalent one a t  8 = B,, consistent 
with the assumed expansions. 

Implicit in this development are, of course, the requirements 

sin a 
Y + l  sin 7 

€E---- Y - l < l ,  gz- 4 1. 

Also necessary are some restrictions on the shock strength and the half-cone 
angle; namely, both K = l/pWa sin2T and tan7 must remain bounded. The 
strong-shock assumption underlying the shock-layer concept is implied by the 
restriction on K. Thenecessityfor these restrictionswill subsequently beappctrent. t 

Substitution of the expansions in E and LT into the governing equations and 
collection of terms of equal powers, yield readily the leading approximation and 
the linear corrections 

u = cos7--e(?) sin7 tanT+crsin27 sinw, 

+ K )  tan27 + B2( 1 - tan27) - ___ 

w = ( ~ ) 4 c o s k J ,  

p =  1 + E  (--E) 1+6K -02cos7 sinw, 4 1 + K  

(2.7) 

In  the same manner, but with a slight increase in the degree of complication, 
high-order corrections can also be determined. In  particular, the circum- 
ferential velocity w can be carried to a, higher order as 

t Note that the agsumptions that tan T is bounded and that E is small emure the existence 
of conical symmetry for the problem. 
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and the pressure field, to the second-order approximation, as 
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5(28)s tan27(28)s 2e2 
24( 1 + K )  - -8( 1 + K )  - (E+?) In 

Application of the pressure formula at the surface yields the coefficients of the 
normal force N and of the axial force X :  

1 

(2.10) I 

The remainder on the right-hand side of equations (2.8) to (2.10) consists of 
terms associated with the third order and higher. 

The necessity of keeping the half-cone angle well below 90" is evident from the 
development of ugiven in (2.7). For the ratio of the correction term to the leading 
approximation is found to be [asin T tan T sin w - +( 1 + K )  s tan2 71, which cannot 
remain small, as is required by the small-perturbation procedure, when 7 -+ &r. 
Similarly, the requirement that K be finite is also apparent from (2.7). The correc- 
tion term and the leading approximation are seen to be in the proportion 
O ( K E )  : 1, when K is large. 

In  figure 2, the normal-force derivative dCNlda of a cone at a = 0 is evaluated 
from (2.10) for the particular circumstance BK -+ 0 and compared with the corre- 
sponding numerical data of Kopal(l947 b) .  The numerical data presented pertains 
to the high Mach number range for y = 1.405, i.e. for 8 = 0.168. The agreement 
is seen to be excellent. One may note particularly that the correction with respect 
to e to the Newtonian result is exceedingly small. In  figure 3, a comparison is 
made of the circumferential velocity on the cone surface approximated by (2.8) 
with the corresponding data computed by Kopal for y = 1.405. To simplify 
mattets, only the case of slender cones (i.e. 7 < 1) is examined, for which a corre- 
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lation in the parameter K is possible. The latter parameter is essentially a variant 
of the hypersonic parameter for slender bodies, M, r. 

While the present shock-layer treatment, according t o  the comparisons shown, 
appears to yield a satisfactory approximation, the agreement of the present 
results and the Stone theory is by no means an indication of the validity of either 

2.2 
10.099 (74.8) i 

0 10" 20 30 " 40" 50 60" 
half-cone angle T 

FIGURE 2. A comparison in the range of small K of the linear lateral force based on the 
shock-layer theory and the corresponding data from the Kopal table. Numerical data 
from Kopal's table (y  = 1.405): 0 ,  K = 0 ( M ,  = co); 0 ,  K or M ,  as indicated. Calculation 
based on: 

a=O 

dCN ----, (=) = 2COS27. 
a== 0 

analysis. Combining formulas for the pressure and the density, the field of an 
entropy function S = p / p v  is 

which gives a sinusoidal variation around the surface. Since, according to (2.11), 
the specific entropy is independent of 8, the above result also suggests that the 
pattern of streamlines, when projected in the 8-w plane, would not change with 
angle of attack. On the other hand, application of the last of equations (2.3) on 

S = ~ + K + E K - ~ c T c o s T s ~ ~ ~ ,  (2.11) 

the surface gives 
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which indicates that the entropy must remain circumferentially uniform on the 
surface. Evidently, the results given in (2.11) for the entropy function, as well 
as other related quantities, are incorrect on the surface at least. This observa- 
tion has been pointed out by Ferri (1950). The breakdown is clearly related to the 
invalidity of the formal development in the form of (2.5) and of the small- 
perturbation procedure (associated with the parameter cr) that follows. In  fact, 
the symptom of invalidity can actually be found in the third-order approxima- 
tion. Namely, as 6 -+ 0, both p and u would become singular like w2 In 6. This 
should correspond to a singularity of the type (r21n 6 in the Stone theory.? 

the parameter K 

FIGURE 3. A comparison of the linear yaw effect on the circumferential velocity a t  the 
surfme based on (2.8), and the corresponding data obtained from Kopal’s table, for slender 
cones. 0 ,  Numericel data from Kopal’s table with the half-cone angles a indicated 
(7 = 1.405). y + l  1 

K = -  
y- 1 yiw; sina7. 

Slender cone result ”( w* ) = 1 + K .  
aa ZU,ECOSO a=O 

3. The sublayer behaviour of the entropy fieId and the modification 
of the small-perturbation procedure 

3.1. The singular differential equation and the scheme of approximation 

In  view of its basic importance to the study of boundary layer and to the in- 
ternal consistency of the yawed-cone theory itself, a critical study of the problem 
related to the non-uniform validity of the approximation will be made. The 
difficulty in the analysis will now be removed by a modified scheme which ensures 

t The density field computed by Kopal (1949) shows no sign of divergence on the cone 
surface. This is due probably to the rather slow rate a t  which In 0 approaches infinity. 

12 Fluid Mech. 12 



178 H .  K .  Cheng 

uniform validity of the approximation, and which reveals the structure of a 
'vortical layer '. It will be found, however, that the circumferential velocity and 
the pressure, and hence the lift and drag, given previously in equations (2.8) 
to (2.10) remain valid up to, and including, second order in c and angle of 
attack. 

Because of the fundamental nature of the problem which underlies both Stone's 
theory and the present work, the perturbation procedure associated with small 
yaw angle alone will first be studied in $9 3.2 and 3.3, and consideration of the 
hypersonic shock layer will be made later as a simple extension of the analysis. 

Inspection of the governing equations shows that the basic difficulty of the 
analysis lies in the last of the differential equations (2.3), namely that governing 
the entropy function. For small cr, the circumferential velocity crw is propor- 
tional to the yaw parameter cr. In Stone's analysis, as well as in the treatment 
given in $2, the term associated with v is always considered to be of an order 
lower than the term associated with w in the same equation, and this leads to 
a solution for S and the related quantities which is not valid in the neighbourhood 
of the surface. Here it is essential to recognize that the small-perturbation pro- 
cedure in Stone's theory overlooks the singular behaviour of s, which results 
from the vanishing of the normal velocity v at the surface. This point may be 
made more evident by writing the differential equation governing 8 in the form 

where the function f is defined as 

In  view of the properties of v and w, the function f will generally be of unit order 
and non-vanishing, and the line 0 = 0 is clearly a line of singularities. In  order 
to account for the behaviour of S in the neighbourhood of the body, the higher- 
order term crf aslaw must be retained. 

The general behaviour of S could be inferred from the characteristic equation 
associated with (3.1) 

dw f (0 ,w;  d 
e m  

(3.3) 

However, an explicit solution to (3.1) is not possible due to the lack of knowledge 
of an integrating factor for the characteristic equation (3.3). One must note 
that, as long as w and v are not exactly known, the general form of the function 
f (e ,  0; a) must be kept. 

The second term in (3.1) associated with f is nevertheless important only in 
the vicinity of the surface 8 = 0, in so far as the first-order yaw effect is concerned. 
In the modified scheme to be used herein, the function f(e, w ;  cr) in (3.1) will 
therefore be replaced byf(0, w ;  0). For the determination of this expression, only 
the leading (zero) approximations of v and w at  the surface are actually required. 
One may tentatively assume that the leading approximations for v and w are 
not affected by the singularity at the surface, which must be verified aposteriori. 
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According to this scheme, the first-order solution to the entropy field will be 
determined from the differential equation 

(3.4) 

The boundary condition for S can be written to the same degree of accuracy 

(3.5) 
into the form qe,,  w ;  c) = so + gg(w) ,  - QR < w < *n, 
where the constants 0, and So represent the shock position and entropy function 
at zero yaw, respectively. The function S can now be obtained readily from (3.4) 
by a separation of the variables. It is essential, however, to first examine the 
error in such a scheme of approximation, so that an unambiguous conclusion 
regarding the uniform validity of the approximation can later be drawn. 

3.2. The error in the modi$ed approximation 

In the subsequent analysis of the approximation, the following properties of 
the functions f and g will be assumed: 

(1) f and af/ag exist and are non-vanishing except in the plane of symmetry 
(i.e. at w = & SR);  

(2) as 8 + 0, f approaches f(0, w ;  c) like 8”; as w -+ - +n, f approaches zero 
like ( W + & R ) ~ ;  and as w -+ QR, f vanishes like ( w -  where Y, p and h are 
positive constants; 

(3) * /dw exists. 
The properties enumerated above are consistent with the definitions given 

for f and g, and are sufficiently general to permit study of a cone at  small yaw 
angle. It will be shown presently that, except in the neighbourhood of the 
stagnation streamline on the lee side 8 = 0, w = QR, the approximation for S 
determined by (3.4) and (3.5) is uniformly valid to the first order provided the 
leading (zero) approximation off, hence of v and w, are correctly specified at the 
surface. The latter provision will be checked subsequently in 9 3.4. 

For the present purpose, let 8 denote the approximate solution determined 

(3.6) 
from (3.4) and (3.5). Thus i~ = e g ( ~ ) ,  

where 0 is the characteristic variable pertaining to the approximate partial 
differential equation (3.4), which is related to 8 and w through , 

To study the error R = S-8,  the differential equations governing S and 8, 
i.e., equations (3.1) and (3.4), will be combined to give 

The characteristics of the equation for R are the same as those of the exact 
equation (3.2). Since along the characteristics 

(3.9) 
dR - ae dw - = -  

cf(e, w ;  c) - c[f(e, W ;  0-1 -f(o, W ;  011 a8law’ 
12-2 
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the error R at an arbitrary point (el, wl) can be evaluated, with the aid of the 
knowledge of B and (3.9), as 

Here Q is the characteristic variable for the exact solution, therefore not the 
same as a. To prove that R is of order a2, it  is sufficient to show that the line 
integral along a curve of constant Q on the right of (3.10) remains bounded. This 
is accomplished in two steps, which exclude in turn the neighbourhoods of the 
lines 8 = 0 and w = in-, as shown in figure 4. 

0 
m 
I1 

c 
0 0 

I 
I 

w = $77 

FIQURE 4. Illustration of the region of uniform validity for the approximate solution based 
on the modified scheme, showing exclusion of the neighbourhood of the stagnation stream- 
line on the lee side, that is, B = 0, (1) = &r. 

Since g'(w) exists, and both f(0, w ;  0) and f(8, w ;  a) behave near the plane of 
symmetry w = in like (w - the integrand of the integral in (3.10) is bounded 
everywhere except near the surface 0 = 0. Thus, excluding the neighbourhood 
of 0 = 0, R will remain uniformly of order a2. 

To prove that the line integral is finite even when 6' comes close to zero, the 
neighbourhood of w = +r will now be excluded for (Ol,wl). Then, the ratio 
f (0 ,Q;  O ) / f ( O ,  w ;  0) cannot become infinite. For,f(O, w ;  0) can now vanish only 
at w = - +n-; butfis never negative and the characteristic equation (3.9) therefore 
requires that a < w < wo. This is evident from figure 4. It follows thatf(0, a; 0) 
will vanish earlier thanf(0,w; 0) when w = -&r is approached. It remains to 
show that the integral 

is finite for all points (8,,wl) sufficiently removed from the line w = in-. Since 
f will approachf(0, w ;  cr) like OV, the problem reduces to checking whether 
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remains bounded. Since Y > 0, the first integral exists, and the second integral,
in view of the characteristic equation, can be changed to

But the numerator of the integrand is of the order of af,,, or of rr. Meanwhile,
since the f ‘a approach zero either like (o - &r)p, or like (w f &+, the integrand
will not be infinite, and the integral therefore is of unit order. Hence, by excluding
the neighbourhood of w = +n, the error is seen to be of order cr2.

It follows from the two steps of the discussion given above that the approximate
solution B is uniformly valid over the entire region 0 < 8 < 0,, -&r < w < +n,
except perhaps in the vicinity of the conical ray 6 = 0, w = $T. The error in-
curred by this approximate scheme is of order (TV. The inability of the present
scheme to deal with the singularity at 8 = 0, w = Qn is understandable from the
illustration of figure 4. In view of the crowding of the characteristics (i.e. the
projected streamlines) in the vicinity of this point, a small error in the slope of
a characteristic could result in a serious discrepancy in the value for B.

3.3. Correction to Stone’s theory

According to the linearized theory of a circular cone at small yaw (Stone 1948),
the circumferential velocity varies around the surface like cos w, and hence

f (0, o; 0) = A cos w. (3.11)

Meanwhile, the entropy function behind the slightly perturbed shock gives

g(w) = -Bsinw. (3.12)

The constants A and B are both positive and generally of unit order, and may
be related directly to the numerical quantities given in Kopal’s table (1947 b).t
In terms of these two constants, the solution to the entropy field, which has taken
the singularity at the surface into account, can now be expressed by

s = s,+fTB(l-p)/(l+p)+o(c+), (3.13)

wheret { z P” tan (+o + in). (3.14)

The result (3.13) possesses all the essential features of an entropy field around a
yawed cone. In particular, it reveals clearly the structure of the ‘vertical layer’
discussed previously by Ferri (1950). On the body, 0 = 0, and the characteristic
variable cvanishes;  therefore the entropy is seen to be circumferentially uniform.
At a small distance from the surface, since ACT is small, and [ M tan (& + an),
the entropy function becomes readily a function of w alone, as given by the Stone
theory. Furthermore, the projected streamlines, which are given by the contours
of constant c, now appear to turn rather abruptly in the neighbourhood of the

t In terms of the variables z, 2, V, v/j5 and EJF in Kopal’s tables (1947 b),

z + 2x/& 7AZ--- -
avjas 9=7'

B f s~av(l;llPT)  - wmj

SO t?=i+*-
$ Alternatively, t = fW{(  I+ sin o)/( I- sin CO))*.
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cone instead of terminating at the surface and to converge at the stagnation 
streamline on the lee side (i.e. a t  0 = 0, w = in). The layer in which the entropy 
abruptly changes is governed by the parameter Aa, and, in view of (3.14), the 
thickness appears to be considerably smaller than O(Aa) which was est.imated 
by Ferri (1950). 

Since a high entropy gradient gives rise to a strong vorticity, the same be- 
haviour is to be found in the velocity field of u. Meanwhile, in view of the relation 
p y  = PI#, singularity of a similar nature also arises in the density field. 

On the other hand, the linear yaw effects on the pressure, the circumferential 
and normal velocities, as well as the shock shape are not influenced by the 
vortical layer. This can be verified by substituting back into (2.3) the density 
field deduced from (3.13), and determining once again the solution forp, v and w. 
It is rather interesting to observe that the results obtained this way for p ,  v 
and w differ from Stone’s merely in the addition of terms of the type 

06[l- 6au]. P(w), o@[ 1 - 6au] G(w), (3.15) 

which are a t  most of order a2. Therefore, the use of the leading (zero) approxi- 
mation for v and w in the calculation off(0, w ;  0) is justified, and with the exclu- 
sion of the neighbourhood of the rearmost conical ray at the surface, the results 
based on the modified scheme indeed constitute a valid first-order approxima- 
tion to the yawed-cone problem. 

3.4. The vortieal Zayer in the shock-layer theory 

In  the preceding discussion pertaining to supersonic flow, the very existence of 
the vortical layer is dependent on the small yaw angle; i.e. a < 1. The subsequent 
results obtained under the hypersonic condition of (2.6) will show, on the other 
hand, that the vortical layer will appear in the form of a thin sublayer of the 
shock layer, and will be governed by the product en. Thus a rather thin vortical 
layer can exist, even if the yaw angle is not so small. 

According to (2.8), the circumferential velocity approaches a very small value 
at the base of the shock layer. Namely, the non-vanishing, leading approxima- 
tion of w at the surface 0 = 0 is 

w(0,o) = E(l+K)COSW. (3.16) 

In  order to account for the singularity a t  the surface due to yaw, one has now to 

(3.17) 
take 

f ( 0 , w ;  0) = e ( l + ~ ) s e c ~  coso, 

in spite of the fact that B itself is a small parameter. The entropy functios may 
then be obtained explicitly as 

P 1-52 

PY 1+C2’ 
- = 1 + K + E K + 2 a c 0 s 7 -  (3.18) 

where g = 0 ~ 4 1 + ~ ) B e c ~  tan (lo 2 + in), 
a result which is essentially of the same form as (3.13). The error in (3.18) can be 
studied in much the same manner as in $3.2, and, in the study, the vicinity of the 
stagnation streamline on the lee side must again be excluded. Equation (3.18) 
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shows that the vortical layer appears in the form of a thin sublayer of the shock 
layer, and is now controlled not by v alone but by the ratio of the yaw angle to 
the compression ratio across the shock. Hence, the vortical layer may still be 
quite thin even when the yaw angle is not very small. To illustrate this point, 
figure 5 gives the inviscid entropy field around a 45' (half-angle) cone at 17' of 
yaw, with a free-stream Mach number of 9.5, for a y of 1.40. The contours of 
constant entropy, which also provide the pattern of projected streamlines, are 
calculated according to (3.18). 

I 
- 1;oo 

FIGURE 5. Illustration of the inviscid entropy fieId around a 46" (half-angle) cone at  17" 
of yaw, with a free-stream Mach number of 9.5, for a y of 1.40. Contours of constant entropy 
also provide the pattern of streamlines projected in the 8-a surface. y = 1.40, T = 45O, 
01 = 17O, M ,  = 9.5. 

Assuming, tentatively, that the singular behaviour in the entropy field does 
not affect the leading approximations of v, w and the fist-order correction top,  
the density is readily obtained from (3.18) as 

2UCOS7 1-c2  -- [ - + (1 + K )  sin w ]  , (3.19) 
(1 + K ) 2  1 +p  

and the radial velocity, from the Bernoulli relation, aa 

1-62 
cos 7 - is( 1 + K )  sin7 tan 7 - vsin27- 

1 + p *  
(3.20) 



184 H .  K .  Cheng 

These results would agree with those given in 5 2, if one let 6)~1+K)uSeC7 -+ 1. The 
vortical layer in the u-field is noteworthy in that it gives, to the first order in e 
and cr, a uniform velocity at the body surface. 

Using the corrected results for p and u and the differential equation (2.3), 
the effect of the vortical layer can be shown to belong only to the third order of 
(e + cr) in the pressure field, and to the second order of (e + (T) in v and w. In  other 
words, except for the density p and the radial velocity u, and with the exclusion 
of the vicinity of the stagnation streamline on the lee side, the foregoing analysis 
has confirmed the validity of the solutions obtained previously in $ 2  for the 
pressure p ,  and the velocities v and w. With the help of these approximate solu- 
tions, the values of w, u andp a t  the surface can in fact be determined consistently 
to an even higher order by direct integration of the differential equation (2.3) 
along the cone surface. 

Shock / 
stagnation line) 

Moo - 

stagnation line) 
FIGURE 6. Pattern of inviscid streamlines on the surface of a yawed cone in hypersonic 
flow. (;) 2(1+K)  EOL 

x tan (& + 1.). 

To illustrate more clearly the flow pattern near the cone surface, figure 6 
provides a qualitative description of the surface streamlines. As shown, all 
streamlines on the cone must come from the stagnation line on the windward 
side, so that entropy is constant on the cone surface. The angles between the 
streamlines and the surface conical rays are, however, of the order ea. For small 
€01, surface streams will follow closely the surface conical rays, and can be traced 
back to the immediate vicinity of the pointed nose. This pattern of surface 
streamlines may be described by the equation 

($(l+r)Er (3.21) 
NN tan (+w + in), 

where r,, is the radial distance at which the surface streamline crosses the ray 
w = 0. The above equation implies, in fact, that all surface streamlines must 
come from the cone apex even when ea does not tend to zero. 
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From the results of the above study, certain important features concerning 
the flow behaviour near the base of the shock layers may be summarized. The 
circumferential velocity will, according to the analysis, approach a small value 
at the surface, being of the order a€( 1 + K )  U, on the cone. Thus, when E is suffi- 
ciently small, the inviscid streamlines near the surface will tend to follow conical 
rays from the apex in a manner quite independent of the yaw angle. As a result, 
a thin vortical layer appears at the base of the shock layer, which is characterized 
by large gradients of entropy, density and velocity, and its thickness is controlled 
by the product ce( 1 + K ) .  At the base of this vortical layer, not only is the entropy 
constant, as required by general considerations, but the flow speed is also found 
to remain circumferentially uniform, a t  least to the first-order approximation 
in ( E  + c). Quite evidently, the above conclusions concerning the flow field at  the 
base of the shock layer are limited neither to small yaw angles nor to bodies of 
particular shapes. In  view of its importance to the analysis of hypersonic boun- 
dary layer, the behaviour of inviscid, hypersonic flow near the surface of an 
arbitrary pointed body will be subsequently studied. 

4. On shock layers in three dimensions 
4. I. Sti,ffne.ss of dreamlines 

Before studying the flow field near the body surface, two basic properties of the 
inviscid flow within a shock layer should be noted; namely, the persistence of 
flow speed (and enthalpy) along a streamline and the apparent stiffness of the 
streamline itself. 

These two properties follow readily from the fact that fluid particles within 
a shock layer, by virtue of the high compression ratio across the shock, possess 
great momentum, and their motions are therefore rather unaffected by the 
tangential pressure gradients. As a result, the flow speed, and hence the enthalpy 
(which follows from the Bernoulli relation), as well as other related quantities, 
will remain essentially constant along the streamline. It also follows that the 
movement of a fluid element within the thin shock layer is identifiable as the 
motion of a particle which is constrained to move along the surface but is other- 
wise free. According to classical mechanics (Goldstein 1950), the trajectory of 
this motion must describe the shortest distance between successive points along 
the curve, that is, along a ‘geodesic’ of the surface. Hence, the streamlines within 
the shock layer appear to possess a certain degree of ‘stiffness’, so to speak, 
since they show little response to the transverse pressure gradient and tend to 
follow the same path as in force-free motion on a surface. 

The two properties of the flow field described pertain to the leading approxi- 
mation for a high compression ratio across the shock. The formal procedure for 
determining the complete streamline pattern and the surface pressure for an 
arbitrary body, which is not the subject of the present study, has been discussed 
in detail by Hayes & Probstein (1959),  Guiraud (1959a)  and Maikapar (1959).  

4.2. Pattern of surface streamlines o n  pointed bodies 
The inviscid streamlines in the immediate vicinity of the surface of a pointed 
body have another simplifying property. They are the geodesics originating 
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from the apex of the pointed nose. This fact is suggested readily by the result 
of the analysis given in $$2 and 3 for a slightly yawed, circular cone. There, the 
circumferential velocity w* at the surface is found to belong to the order 
a€( 1 + K )  U,. Hence, in the limit =e -+ 0, provided K = O( l), streamlines near the 
surface approach surface conical rays which are the geodesics from the apex. 
This pattern of streamlines is therefore completely determined by the surface 
geometry and is essentially independent of the inclination of the body and other 
free-stream conditions. In  the following discussion, consideration will be given 
to non-slender pointed bodies of arbitrary shape. 

FIGURE 7. A system of orthogonal curvilinear co-ordinates in which x1 is the distance 
measured along the geodesic originating from the apex, and xg along the surface normal. 

In  order to show that geodesic streamlines at the base of the shock layer 
originate from the vicinity of the pointed nose, the circumferential velocity on 
a conical surface will first be examined. It is convenient to use a system of 
orthogonal curvilinear co-ordinates as illustrated in figure 7, in which x1 is the 
distance along the geodesic from the apex and x2 the distance from the surface. 
The differential equation governing the circumferential velocity us, when applied 
directly on a conical surface, may be written as 

where IGl is the function which appears in the expression for an arbitrary line 
element d 9  on the conical surface, d Y 2  = dx:+z2,G2(z3)dz& and its magnitude 
can in most cases be regarded roughly as the body thickness. Underlying (4.1) 
is, of course, the assumption of conical symmetry which is valid under the 
shock-layer approximation provided the shock or the body angle is not too close 
to 90". Also implicit is SL requirement similar to that on K in $5 2 and 3; that is, 
the compression ratio across the shock must be sufficiently strong that the 
estimate given on the right-hand side of (4.1) holds. For a non-slender body, 
G belongs to unit order and (4.1) shows that u3/u1 is of order 8. Therefore, inviscid 
surface streamlines will approach conical rays generating the surface, as E -+ 0. 

The extension to an arbitrary pointed body follows immediately: near the 
nose, the flow field approaches a conical structure, and, according to the pre- 
ceding discussion, the limiting streamlines must follow conical rays from the 
apex. Continuation of these geodesics from the nose region to the remaining 
portion of the body provides the complete streamline pattern on the pointed 
body. 
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For the streamline pattern on slender bodies, however, two situations must 
be considered. In  one case, while the body is slender, the cross-flow is not so 
strong that the surface streamline will still retain the same pattern as on a 
non-slender pointed body. In  the other case, the cross-flow field is strong enough 
to offset the geodesic streamline pattern on the surface and the flow will a.pproach 
that of an infinite cylinder at finite yaw angle. For a slender circular cone at yaw, 
a criterion for this sort of classification can be obtained from the magnitude of 
the parameter €a( 1 + a). When this parameter is of order unity or less, one has 
.,/Urn = O[~a(l +a)], which agrees with the previous result; and when it is 
larger than unit order, one has u,/U,, = O [ { e a ( ~  + a)}*], which, when interpreted 
with the aid of the cross-flow concept, is consistent with the results of Chester 
(1956) and Freeman (1 956) for the bluff bodies. In  either situation, nevertheless, 
a vanishing u, results in the limit of E -+ 0.t 

4.3. Thin vortical layer on three-dimensional pointed bodies 
For a circular cone at small yaw angle, the analysis in the previous section reveals 
that a thin vortical layer exists at the base of the shock layer, across which an 
abrupt adjustment in enthalpy and flow speed occur. This ‘vortical’ layer is 
controlled not only by the yaw parameter a, which characterizes the cross-flow 
effect in general, but also by the product €a. The vortical layer is indeed a charac- 
teristic feature of shock layers on three-dimensional pointed bodies, as will be 
seen to follow readily from the streamline pattern peculiar to the surface of a 
pointed body. 

In  order to perceive the connexion between the surface streamline pattern 
and the sublayer-like behaviour of the flow field in the general case, one may first 
study the projected streamlines in a flow field having conical symmetry. The 
trajectory of a fluid particle, projected on a spherical screen of unit distance from 
the apex (i.e. the 8-u plane), is determined by the ratio of the normal and the 
circumferential velocities, u2/u3. The normal velocity component u2 must vanish 
at the surface. While the circumferential velocity us does not vanish at the surface, 
except in the plane of symmetry (and perhaps in certain other isolated regions), 
it  nevertheless approaches a rather small value at the surface, being in most 
cases of order E .  Thus, at a point removed from the body surface, the projected 
streamline has a non-vanishing slope (with respect to the body surface). In  
approaching the cone surface, the slope diminishes with u2 and the trajectory 
becomes eventually tangent to the surface. However, by virtue of the fact that 
the circumferential velocity on the surface takes on a small value, effective 
adjustment of the slopes of these projected streamlines does not take place 
except at the immediate vicinity of the cone surface. The abrupt changing of the 
particle paths near the surface then gives rise to a sublayer-like behaviour. In  
view of the fact that the body surface is wetted, so to speak, only by the stream- 
lines coming from the strongest part of the shock, and on account of persistency, 
the flow speed (and enthalpy) at the base of the vortical layer must be circum- 
ferentially uniform. 

t However, representation of the surface-streamline pattern by the geodesics from the 
pointed nose is not always satisfactory for the slender bodies. 
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Once the existence of a thin vortical layer has been established in the conical 
region (i.e. the vicinity of the pointed nose) the question of its existence over the 
remaining part of the body is answered, since enthalpy and flow speed will persist 
along neighbouring streamlines downstream of the conical region. In  fact, 
along any geodesic from the apex, one will find the ‘jump ’ in enthalpy or flow 
speed across the vortical layer unchanged. 

The flow structure of the vortical layer in the general case is very similar to 
that illustrated previously for the circular cone at small yaw angle. In  fact, a 
treatment of the entropy field quite analogous to the scheme used in 8 2 may be 
adopted for the more general situation. In  the case of a circular cone at  large yaw 
angle, for example, one may study, instead of (3.4), 

where P(u) is the (non-vanishing) leading approximation of (uwB)/(ev cos 7) a t  
the surface, which does not require a knowledge of the vortical layer effect. 

5. Concluding remarks 
A detailed treatment of the problem of inviscid hypersonic flow over yawed 

circular cones is given using the shock-layer approximation in conjunction with 
small perturbations in the yaw angle. The singularity of the entropy field is 
examined, and a uniformly valid solution is obtained which is applicable to hyper- 
sonic as well as to supersonic rhgimes. In  the hypersonic case, the solution 
provides an explicit simple description of the shock layer and exhibits a thin 
vortical layer at the inner edge of the shock layer. Within the framework of the 
shock-layer theory, certain features of the flow field around a pointed, but other- 
wise arbitrary, body are studied. At the inner edge of the shock layer, the 
streamlines are found to follow the surface geodesics originating from the 
pointed nose, and a thin vortical layer is shown to exist. 

Of particular interest among the results are the formulas describing the entropy 
field of a circular cone a t  small angle. In  order to account for the singularity 
at the surface, which was overlooked in the previous analysis by Stone (1948, 
1952), a modified scheme of small perturbation (with respect to yaw angle) is 
used. The solution obtained reveals the structure of a vortical layer as anti- 
cipated by Ferri (1950), although its thickness appears to be considerably less 
than Ferri’s estimate. Except in the neighbourhood of the stagnation streamline 
on the lee side, this scheme is shown to give a valid first-order approximation to 
the entropy field. In  general, the method provides corrections to Stone’s theory 
for the density and the radial velocity fields; it  also confirms the validity of the 
first-order results for the pressure field, and the field of circumferential velocity 
computed by Kopal (1947 b) .  

In  the hypersonic rhgime where shock-layer theory applies, the modified 
scheme provides approximations to the flow fields which are generally, and 
uniformly, valid to the first order in c = (y- I)/(? + 1) and in the angle of attack. 
For the pressure and the circumferential velocity fields, valid formulas have, 
in fact, been obtained consistently to the second order, including the non-linear 
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yaw effect. Noteworthy among these results is the small value of the circum- 
ferential velocity near the surface, which is seen to belong to the order €&Urn. 
Since E is assumed to be small, this means that the streamline at the inner edge 
of the shock layer must follow closely the generator of the cone surface in a 
manner quite independent of the yaw angle. On this account a vortical layer 
appears in the form of a sublayer at the inner edge of the shock layer. Hence, this 
vortical layer is rather thin (being less than a@ in angular thickness) even when 
the yaw angle is not very small. 

The explicit results of the foregoing analysis have thus illustrated clearly 
certain particular features of the shock layer which should be meaningful to 
the analysis of boundary layers in three dimensions. In  the light of these results, a 
study is made for the more general situation in which the specific assumption of 
small yaw angle as well as that of a circular cone are not required. In  exploring 
the three-dimensional shock layer, two basic flow properties are noted. Namely, 
that flow speed and enthalpy persist along the streamline, and that fluid particles 
tend to travel along the shortest path on the body surface; i.e., along the surface 
geodesics. The last fact implies that the geometry of the streamline is rather 
insensitive to the effect of the transverse pressure gradient and the streamlines 
thus appear to be rather ‘stiff ’. The fact that the streamlines are geodesics does 
not define fully the streamline pattern. At the surface of a pointed body, however, 
the (inviscid) streamline geodesics do approach a definite pattern. They belong 
to the family of geodesics originating from the pointed nose, irrespective of the 
angle of attack. As a result of the streamline pattern on the surface, a thin 
vortical layer will generally appear a t  the inner edge of the shock layer around 
a three-dimensional pointed body. At the base of the vortical layer, not only is 
the entropy constant, but also the flow speed (and enthalpy) must be essentially 
uniform. 

The conclusions concerning the streamline pattern on a pointed body and the 
sublayer behaviour of the flow field that follows are borne out by the detailed 
results of the foregoing analysis for a circular cone, although the latter study 
has been restricted to small yaw angle. One may note that, for bodies which are 
extremely slender, the family of geodesics emanating from the pointed nose 
cannot always be used to provide an adequate description of the inviscid stream- 
line pattern on the body surface. However, the transverse velocity on the 
surface may still be regarded as being small and a vortical layer can still be 
found, although it would be less pronounced. 

The implication of the foregoing study for the analysis of boundary layers 
in hypersonic flow should not be overlooked. Since the inviscid streamlines near 
the surface of a pointed body closely follow the geodesics originating from the 
pointed nose, the streamlines in the boundary layer must follow the same pattern, 
if the ‘stiffness ’ property can also be maintained there. The latter condition may 
indeed be fulfilled in certain classes of hypersonic boundary layers, particularly 
those on non-slender pointed bodies in which the density level is generally the 
same as, or even higher than, that of the outer flow (Cheng 1961). Hence, the 
presence of a thin shock layer around a pointed body may generally imply a 
small secondary flow in the boundary layer. The boundary-layer streamlines in 
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this instance will be determined by the body geometry alone and are independent 
of the angle of attack of the body. The geodesic co-ordinates (as illustrated in 
figure 7) thus appear to be the natural choice for analysing hypersonic boundary 
layers in three dimensions. 

Meanwhile, the existence of a thin vortical layer indicates the importance of 
outer-flow vorticity for the boundary-layer development in hypersonic flow. 
One recalls that the vortical layer in the supersonic case is associated primarily 
with a small cross-flow, hence its presence in any case is not too important. The 
vortical layer that appears in the hypersonic shock layer, on the other hand, 
should have a far greater effect because of the much larger variation in the outer 
entropy field. However, on account of the rather small thickness of the vortical 
layer, as revealed by the foregoing analysis on a circular cone, its effects may 
perhaps be disregarded under certain practical circumstances, namely when 
the boundary layer itself has an appreciable thickness. None the less, should the 
Reynolds number indeed be very high, the outer edge of the boundary layer must 
then be found at  the base of the vortical layer. In  this limiting case, the flow 
speed at  the boundary-layer outer edge may be taken simply as a constant. 
A rather involved, but otherwise more interesting problem lies in the inter- 
mediate case, in which the boundary layer and the highly vortical inner region 
of the shock layer must be matched properly. The inviscid solution for the yawed 
circular cone obtained herein, which provides an analytical description of the 
structure of the vortical layer, may perhaps serve as a starting-point for such 
an inquiry. 

This paper is based on research performed for the United States Air Force 
Aeronautical Research Laboratory of Wright Air Development Division under 
Contract No. A F  33(616)-6025. 
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